← Go back

EML4U

Alumni project (April 2020 - March 2022)

Erklärbares Maschinelles Lernen für interaktive episodische Updates von Modellen

About the project

The goal of the project is to develop methods of ML explainability for a question that is highly relevant for practice: Which explanations can be offered to the user to make episodic interactive learning efficient and valid, especially in applications where manual data annotation is costly? In addition to a classical feature representation of data, the project will also consider latent representations in embedding spaces (as is common in automatic language processing and knowledge graph processing) that are relevant for practice.

Funding program: Erklärbarkeit und Transparenz des Maschinellen Lernens und der Künstlichen Intelligenz

Funding program
BMBF, Grant No. 001IS19080B

Publications

LauNuts: A Knowledge Graph to identify and compare geographic regions in the European Union

By Adrian Wilke, Axel-Cyrille Ngonga Ngomo

The Semantic Web (ESWC 2023), 2023, #inproceedings

CausalQA: A Benchmark for Causal Question Answering

By Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Blübaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast

COLING, 2022, #inproceedings

MultPAX: Keyphrase Extraction using Language Models and Knowledge Graphs

By Hamada M. Zahera, Daniel Vollmers, Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo

ISWC, 2022, #inproceedings

I-AID: Identifying Actionable Information from Disaster-related Tweets

By Hamada M. Zahera, Rricha Jalota, Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo

IEEE Open Access, 2021, #inproceedings

Drift Detection in Text Data with Document Embeddings

By Robert Feldhans, Adrian Wilke, Stefan Heindorf, Mohammad Hossein Shaker, Barbara Hammer, Axel-Cyrille Ngonga Ngomo, Eyke Hüllermeier

Intelligent Data Engineering and Automated Learning -- IDEAL 2021, 2021, #inproceedings

LauNuts: A Knowledge Graph to identify and compare geographic regions in the European Union

By Adrian Wilke, Axel-Cyrille Ngonga Ngomo

The Semantic Web (ESWC 2023), 2023, #inproceedings

CausalQA: A Benchmark for Causal Question Answering

By Alexander Bondarenko, Magdalena Wolska, Stefan Heindorf, Lukas Blübaum, Axel-Cyrille Ngonga Ngomo, Benno Stein, Pavel Braslavski, Matthias Hagen, Martin Potthast

COLING, 2022, #inproceedings

MultPAX: Keyphrase Extraction using Language Models and Knowledge Graphs

By Hamada M. Zahera, Daniel Vollmers, Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo

ISWC, 2022, #inproceedings

I-AID: Identifying Actionable Information from Disaster-related Tweets

By Hamada M. Zahera, Rricha Jalota, Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo

IEEE Open Access, 2021, #inproceedings

Drift Detection in Text Data with Document Embeddings

By Robert Feldhans, Adrian Wilke, Stefan Heindorf, Mohammad Hossein Shaker, Barbara Hammer, Axel-Cyrille Ngonga Ngomo, Eyke Hüllermeier

Intelligent Data Engineering and Automated Learning -- IDEAL 2021, 2021, #inproceedings